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Abstract: 
Marine fishes are heterogeneously distributed across their ranges according to population 
dynamics governed by complex spatiotemporal relationships between ontogenetic habitat usage, 
species interactions, environmental variability, and harvest patterns. However, few stock 
assessments incorporate spatial population structure in the determination of population status and 
sustainable catch limits. A small number of generalized stock assessment software platforms are 
utilized worldwide to assess a large number of marine fish populations. Although each platform 
relies on similar underlying population dynamics, the spatial capabilities and functionality often 
differ among them. We catalogue spatial dynamics and capabilities across stock assessment 
platforms to leverage collective experiences and identify future needs for next generation 
assessment software packages. Despite commonalities across platforms (e.g., most models allow 
for a single population with spatial heterogeneity,  apportionment of recruitment, and age-varying 
connectivity), no single platform is flexible enough to address the full breadth of spatial dynamics 
observed for managed marine fish species. Our review clarifies spatial assessment design and 
modeling ‘good practices’, while emphasizing the need for more generalizable and modular next 
generation assessment platforms that can account for the spatiotemporal complexity of marine 
resources (such as natal homing and spawning migrations, ontogenetic movement patterns, 
metapopulation structure, and complex fleet dynamics). Generalized, spatially-integrated 
assessment platforms will be key decision-tools to account for spatiotemporal species and fishery 
interactions, particularly as managers attempt to address climate change and implement 
ecosystem-based fisheries management.  
 
Keywords: 
Spatial population structure, spatial stock assessment, software design good practice, movement, 
mark-recapture, next generation stock assessments 
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1. Introduction 
Spatiotemporal distributions of living marine resources arise from productivity, movement, 
harvest, and environmental interactions that collectively influence population structure and 
dynamics at multiple scales (Ciannelli et al. 2008, 2013; Link 2018). Observations of complex 
spatial dynamics for many marine species have increased recognition that data to monitor and 
preserve spatial population structure is critical for sustainable fisheries management (Smedbol and 
Stevenson, 2001; Hilborn et al., 2004). In particular, the availability of high-resolution data has 
led to important advancements in understanding fine-scale connectivity dynamics and increased 
explorations into spatial population models (Nathan et al., 2008; Goethel et al., 2011). Spatial stock 
assessment models are a type of integrated population model that directly incorporates spatial 
processes to estimate population parameters by fitting to available data to determine stock status 
(Hilborn and Walters, 1992; Maunder and Punt, 2004). Such models are increasingly recognized 
as imperative for preserving ecosystem function and managing biocomplexity (Cadrin et al., 2020).  
Yet, most stock assessments utilized for management advice do not explicitly account for spatial 
heterogeneity, despite wide recognition of the importance of spatial structure for buffering against 
stock collapses (Berger et al., 2017b). A comprehensive understanding of spatial modeling tools, 
along with existing capabilities and knowledge gaps, is a first step towards increased use of spatial 
stock assessments in fisheries management. 

Spatial assessment models have a rich history as research tools, but have limited ‘operational’ 
(directly used for determining harvest regulations) applications in fisheries management (Quinn et 
al., 1990; Porch et al., 1998; Goethel and Cadrin, 2021). Simulations show that spatially explicit 
models are typically more robust than spatially-aggregated or spatially-implicit (e.g., areas-as-
fleets) counterparts when there is enough informative data (e.g., Porch et al., 1998, Ying et al., 
2011; Goethel et al., 2019; Bosley et al., 2022). In general, spatial stock assessments can better 
match the scale of biological processes, incorporate a broad spectrum of data sources at the scale 
of collection, and directly inform spatiotemporal management actions (Maunder, 2001; Berger et 
al., 2017b; Punt et al., 2020).   

In some cases, spatial assessments may not be required, or practical, to develop adequate 
management advice (e.g., Punt et al., 2017; Lee et al., 2017). For instance, spatial models are often 
complex, data intensive, and limited by the quantity, quality, and availability of georeferenced data 
(Berger et al., 2017b; Cadrin, 2020; Punt et al., 2020). As spatial resolution increases, data are 
increasingly partitioned, which reduces the sample sizes available to estimate important spatial 
parameters (e.g., movement and strata-specific recruitment or fishing mortality; Cope and Punt, 
2011; Punt, 2020). Other impediments to implementing spatial stock assessments include low-
resolution historical catch data, limited information regarding connectivity, and unresolved 
hypotheses about spatial processes (Berger et al., 2017b). Institutional inertia, such as within 
regional fisheries management organizations (RFMOs), may also prevent or delay the adoption of 
spatial management procedures due to added model complexities and unfamiliarity (Berger et al., 
2017b; Punt, 2019a,b). Nonetheless, the tradeoffs of using a spatial stock assessment model should 
be explored through simulation testing to directly examine potential benefits and limitations (Guan 
et al., 2013; Punt, 2019b; Cadrin et al., 2023; Goethel et al, 2023b). 

The practicality of implementing spatial assessments has increased over the last decade, largely 
spurred by a rapid evolution in data collection technologies with high spatiotemporal resolution 
(Hidalgo et al., 2016; Lowerre-Barbieri et al., 2019; Goethel et al., 2023b). Thus, the desire and 
ability to evaluate operational spatial assessments is expected to increase in the coming years 
(Goethel and Cadrin, 2021; Thorson et al., 2021), and contemporary modeling tools will need to 
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be developed to meet growing demands (Dichmont et al., 2016; Punt et al., 2020). Roughly twenty 
generalized stock assessment platforms (i.e., standalone software packages) are currently used to 
assess the population status and trends of many global fish stocks, but only five are known to 
explicitly account for spatial processes (Punt et al., 2020; Dichmont et al., 2021). While some 
commonalities exist among the five (hereafter referred to as the ‘platforms’), each platform was 
mostly developed independently to address specific needs for a given stock or management 
framework. Thus, there are unique assumptions and approaches to incorporating spatial processes 
and population structure across platforms. A comprehensive understanding of existing spatial 
assessment capabilities and limitations (e.g., what dynamics cannot yet be addressed) need to be 
identified to effectively guide the development of the next generation of stock assessment software 
platforms (Lynch et al., 2018, Punt et al., 2020).  

The purpose of this paper is to expand upon the work of Punt et al. (2020) who reviewed the 
modeling capabilities of nine generalized assessment software packages. Here, we review the 
spatial capabilities of platforms to highlight commonalities, systematic differences, and provide 
insight into regional differences in spatial modeling approaches. Based on our review, we identify 
current challenges that remain and provide good practice guidance towards the adoption of spatial 
stock assessments. The focus of this paper is on the spatial dimension of population models, but 
we acknowledge the correlative and interactive nature of all model structure decisions (e.g., space, 
time, age, sex, and life-stage partitions), which are implicitly considered in our analysis. The ability 
to better incorporate climate change impacts and ecosystem dynamics into stock assessment and 
management frameworks will require spatial assessment tools. This review provides a prospective 
of where the stock assessment discipline currently is and where we should aim to go in the coming 
years to ensure changing distributions, species’ spatiotemporal overlap, and other scale-dependent 
management exigencies can be adequately addressed.  

2. Spatial capabilities of generalized stock assessment platforms 
A useful starting point for comparing spatial assessment capabilities is to develop a common 
vocabulary (Goethel et al., 2023a). The literature on marine population structure suffers from 
inconsistent use of spatial terminology (Kritzer and Sale, 2004; Cadrin, 2020), and many of the 
reviewed software packages use different terms for the same spatial processes. Although previous 
studies have defined important terms applicable to spatial assessment models (e.g., Goethel and 
Berger, 2017; Cadrin, 2020), no comprehensive unified nomenclature has been developed. For this 
paper, we define a common set of spatial terms and use them to compare and contrast platform 
spatial capabilities (Table 1). While a comprehensive, rigorous treatment of spatial stock 
assessment terms is beyond the scope of this review, the provided definitions can form a basis for 
developing a unified nomenclature to combat pervasive linguistic uncertainty and vagueness 
associated with spatial population modeling.   

There are five primary generalized stock assessment platforms, which can readily incorporate 
spatial population structure and connectivity. Each of the five platforms have been used to provide 
tactical management advice for national and international RFMOs across the globe (Fig. 1). The 
platforms included in this review are Casal2 (Doonan et al., 2016) – the successor to CASAL (C++ 
Algorithmic Stock Assessment Laboratory; Bull et al., 2012), the Globally-applicable area-
disaggregated general ecosystem toolbox (Gadget; Begley 2005), MULTIple length Frequency 
ANalysis-Catch at Length (MULTIFAN-CL or MFCL; Fournier et al. 1998), Stock Synthesis 
(SS3; Methot and Wetzel, 2013), and Virtual Population – 2 Box (VPA 2-Box; Porch 2018).  

Although each platform was originally built to address specific objectives or assess a given 
species (or species group), all have undergone iterative development to generalize versatility 
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across an array of life histories, spatial dynamics, and data availability (Punt et al., 2020). Casal2 
is a statistical age- or length-structured population dynamics modeling platform designed to be 
structurally flexible and user-friendly. The user can easily define alternative population categories 
(e.g., sex, life-stage, spatial strata) for single or multiple stocks. Casal2, and its predecessor 
CASAL, have been primarily used for New Zealand and Australian stock assessments, and for 
toothfish assessments for the Commission for the Conservation of Antarctic Marine Living 
Resources. Gadget is based on an age-, length-, or age-length-structured statistical population 
model, which tracks growth, fishing, predation, and migration processes for multiple species (or 
multiple groups within a species) using a general ecosystem structure framework. Gadget is 
primarily used to assess stocks in the North Atlantic Ocean. MFCL is a statistical age-structured 
population model optimized to fit to length or weight data and is scalable according to data 
availability. MFCL is used to assess large pelagic species in the Pacific and Indian Oceans. SS3 is 
a statistical age- and length-structured population dynamics modelling framework, which is 
scalable according to data availability (data-weak to data-rich). Thus, it supports broad application 
in the United States and around the world. VPA 2-Box was designed to extend the general cohort 
reconstruction methods of virtual population analysis (e.g., the adaptive framework, ADAPT; 
Gavaris 1988) to two spatial strata (‘boxes’), particularly for the case of Atlantic Bluefin tuna 
population assessments.   

Each platform has unique underlying spatial population dynamic assumptions, data options, 
and available spatial model configurations. We first overview the primary spatial features and 
modeling options that a platform should consider. The specific spatial capabilities of each 
modeling platform are then reviewed to highlight unique features along with commonalities among 
platforms. We conclude this section by discussing current developmental features, because these 
are useful for understanding future directions for spatial models. Focus is placed on modeling 
options related to spatial and population structure, productivity dynamics, connectivity, spatial 
variation in demographics, fleet structure, and biological reference points. Model features were 
identified based on a literature review and input from lead platform developers.  

2.1 Primary features of spatial stock assessment methods 
There are several key considerations that arise when developing spatial stock assessment models, 
including the type of spatial population structure, how connectivity occurs among spatial strata or 
population units, the spatial scale of recruitment and other demographic processes, and the 
calculation of appropriate reference points (Table 2; Punt, 2019b; Goethel et al., 2023a). All 
features of an integrated stock assessment are necessarily intertwined, and parameters can be 
increasingly co-dependent when the model has spatial dimensions (Sampson, 2014). Each 
modeling choice influences parameters and dynamics across the spatiotemporal domain, often with 
feedback loops (e.g., movement parametrizations influence spatial recruitment estimation and vice 
versa).  In addition, the quantity, quality, and resolution of available data plays a critical role when 
structuring a model. 

Population structures that can be modeled include panmictic (a single reproductive 
population), spatial heterogeneity within a single reproductive population, a metapopulation, and 
multiple populations with limited reproductive mixing and natal homing (see Table 1 for 
definitions). The productivity dynamics and stock-recruit assumptions (i.e., scale of density-
dependence) are typically features of the population structure (Table 1). For instance, a single 
population will assume global density-dependence using a single stock-recruit relationship without 
(panmictic) or with (spatial heterogeneity) apportionment. A metapopulation typically assumes 
local density-dependence with a stock-recruit relationship for each population component (i.e., 
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sub-population). Natal homing implies local density-dependence, with each population 
maintaining a unique stock-recruit relationship due to lack of reproductive mixing.  

The number of spatial strata within the biological domain should be determined by the degree 
of heterogeneity in fishing dynamics and demographics, while balancing data availability with 
spatial strata resolution. Connectivity among spatial strata should account for dispersal among 
population units, directed migrations (e.g., natal homing spawning migrations), mixing among 
population units, or movement among strata or sub-populations. The principle of parsimony is 
often necessary when developing models with biological connectivity patterns due to the rapid 
expansion of parameters with increasing numbers of spatial strata. For example, a variety of 
simplifying assumptions can be utilized for describing movement dynamics in spatial assessments, 
such as ignoring movement, estimating time- and age-invariant movement, or implementing 
various functional forms or preference functions to model the primary drivers of movement while 
reducing the number of estimated parameters. 

Fleet structure and the degree of demographic (or life history) variation should also guide the 
number of spatial strata within an assessment model (Punt, 2019b). Spatiotemporal variation in 
fishing dynamics across the model domain will impact age-specific harvest, which is driven by the 
availability of fish in a given strata and to a gear type (i.e., the strata-specific selectivity). Fleets 
can either be modeled independently by stratum or parameters (e.g., selectivity or availability) can 
be shared across strata when there are commonalities in harvest patterns. In some cases, spatial 
patterns in fishing reflect spatial patterns in the targeted population such that modeling spatial 
stratifications by fleet can be advantageous (Berger et al., 2012; Waterhouse et al., 2014). Spatial 
demographic assumptions are another important consideration, because they influence estimates 
of spawning stock biomass (via maturity), mortality (through natural mortality), and depletion (as 
determined by growth and size- or age-based harvest; Punt, 2023). Similar to fleet structure, the 
degree of spatial complexity associated with demographic parameters (e.g., growth, maturity, 
fecundity, and natural mortality) can differ, be shared, or correlated across strata. Demographic 
complexity can be determined by ecosystem drivers (e.g., be phenotypic and based on area of 
inhabitance, such as in a subpopulation of a metapopulation) or due to genetic differences (i.e., be 
genotypic and based on natal population).  

Biological reference points are used to determine the current status of the stock, which are key 
components of harvest control rules (HCRs) used to specify (and project) future catch limits. 
Spatially-explicit reference points can be non-intuitive to calculate and difficult to interpret when 
there is non-stationarity in population dynamics (e.g., movement occurs across mortality and 
demographic regimes or connectivity varies over time; Goethel and Berger, 2017). However, under 
the assumption of time-invariant movement rates, equilibrium reference points can be derived by 
population or stratum assuming either global or local density-dependence in recruitment dynamics 
(Porch, 2018; Kapur et al., 2021; Cardinale et al., 2023). 

2.2 Spatial data integration 
A variety of unique data types can provide information on spatial processes (Punt et al., 2019b; 
Goethel et al. 2023a), such as tagging data for migration pathways (Goethel et al., 2011; Sipple et 
al., 2015) or oceanographic data for drivers of movement (Malick et al., 2020). However, the 
utility, information content, and processes that can be informed by a given data source depend on 
how a platform integrates the information (e.g., the scale at which it is applied and assumptions 
utilized in the observation model; Punt, 2019b). All of the platforms allow integration of typical 
fishery and survey data (e.g., biological inputs, catch, abundance indices, and age- or length-
composition data) by stratum or population (depending on population structure). Explicit data 
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weighting options or iterative reweighting procedures (i.e., depending on assumed probability 
distributions) to account for uncertainty among data sets is also possible. External knowledge can 
be incorporated through the use of priors on specific parameters or bounds. Examples of novel 
spatially-explicit data sources that can be integrated into assessment platform include stock 
composition information (Casal2, Gadget, SS3, and VPA 2-Box), environmental covariates 
(MFCL, Gadget, and SS3), and predation information (Casal2, Gadget, and SS3). 

2.2.1 Tagging data 
Tagging (e.g., conventional, genetic, or chemical)  data is one of the most common auxiliary data 
sources used in spatial stock assessments, which can help inform mortality, distribution, 
connectivity, or abundance.  There are some key differences among platforms in how these data 
are used to inform population dynamic processes. All platforms utilize the Hilborn (1990) tag-
attrition modeling approach, which models tag cohorts (i.e., a combination of release stratum, 
population unit, and age or length) through time using a spatial Brownie estimator. Observed 
recaptures across space are predicted based on mortality and movement estimates by fitting the 
tagging data in the combined objective function. Casal2 can also utilize a Petersen estimator  to 
directly inform predictions of absolute abundance (i.e., population scale; Doonan et al., 2016). 
Casal2, Gadget, and MFCL additionally allow age to be assigned implicitly through size-age 
matrices and growth parameters. When using conventional tagging data, all platforms use release-
conditioned tagging sub-models (as opposed to recapture-conditioned approaches; McGarvey et 
al., 2010). This implies that spatially-explicit recapture probabilities are a function of the number 
of releases in each stratum or population-unit (Punt et al., 2020). Tag recaptures are then defined 
by spatially-explicit fleet dynamics (i.e., fleet-specific fishing mortality and associated selectivity). 

Software that integrates tag-recovery data (or mark-recapture data more generally) into a stock 
assessment must include methods to adequately account for tag model ‘nuisance’ parameters (i.e., 
tag non-reporting rate, tag shedding rate, and tag-induced mortality) and tag mixing assumptions 
to ensure inference from tagged individuals is representative of non-tagged individuals (Goethel 
et al. 2019). All platforms have the capability to address these needs by incorporating additional 
tag parameters that may be input or estimated. For instance, tag reporting rates can be input or 
estimated (e.g., with priors) by fleet and stratum for all platforms. Reporting rates may also vary 
by tag cohort (Casal2) or tagging program (MFCL) when multiple tagging experiments have been 
conducted. Casal2 can model the recapture process based on a detection probability defined by 
user inputs for the number of fish that were scanned for tags and the rate of detection. The detection 
probability can be based on a subset of the catch and can be fleet or strata specific. Each platform 
also allows specification of tag loss due to initial tag shedding, tag-induced mortality, or chronic 
tag loss. Incomplete tag mixing can be accounted for by adjusting fishing mortality for recently 
tagged fish (Casal2, MFCL, and VPA 2-Box) or defining a mixing period during which recaptures 
are not fit (Casal2 and SS3). For MFCL, the fishing mortality for tag recaptures during the mixing 
period, which can be specified by release cohort, is determined using numerical methods (e.g., 
Newton-Raphson) in a similar way as is commonly done to evaluate models conditioned on a given 
catch.  

The structure of tagging sub-models in stock assessment, such as distributional assumptions 
and the capacity to pool tag recoveries, can influence estimation and computing overhead. For 
example, MFCL and SS3 allow the user to specify a maximum time at liberty before tags enter a 
pooled state where cohort is no longer tracked to improve run times.  SS3 requires the assignment 
of age-at-release, instead of modeling multiple ages based on length-at-release, as is the case for 
MFCL. Platforms have different options for specifying the probability distribution assumptions 
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(i.e., likelihood functions) used for mark-recapture data, including binomial (Casal2), negative 
binomial (MFCL, SS3, and VPA 2-Box), Poisson (Gadget, MFCL, SS3, and VPA 2-Box), or 
multinomial (MFCL, SS3, and VPA 2-Box).  

Although not as commonly integrated, other tag types (e.g., satellite, telemetry, natural, or 
gene) can be incorporated using existing mark-recapture frameworks within each platform, but 
they require alterations to data format (e.g., Taylor et al., 2011).  For example, it may be required 
to aggregate information by cohort and time step in the assessment when using satellite tags. 
Otherwise, simplifying assumptions may need to be devised, such as assuming 100% reporting for 
genetic tags. VPA 2-Box is the only platform that explicitly includes a generalized tag-attrition 
model that differentiates the fitting procedure for satellite pop-off tag observations and 
conventional tag release and recoveries.   

2.3 Spatial modeling options 
2.3.1 Population and spatial structure 
All platforms are capable of accommodating a panmictic (i.e., single population) structure, along 
with at least one other spatially-defined population structure (Table 3). For instance, all platforms 
except VPA 2-Box are capable of modeling spatial heterogeneity within a single population paired 
with a global density-dependent recruitment assumption. In fact, the majority of spatially-explicit 
models used for management advice assume a single population with spatial heterogeneity (Punt, 
2019a,b). 

Both MFCL and SS3 only allow a single population with or without spatial heterogeneity. 
However, the development pathways for MFCL and SS3 were quite different. MFCL was designed 
for highly migratory large pelagic species, where most spatial models have directly incorporated 
post-settlement connectivity (e.g., western and central Pacific Ocean yellowfin tuna, Thunnus 
albacares; Vincent et al., 2020). Conversely, SS3 was initially designed for Pacific hake in a natal 
homing context (Methot and Dorn, 1995), and has been more widely implemented for demersal 
species where adult connectivity is often ignored (e.g., Gulf of Mexico red snapper, Lutjanus 
campechanus; SEDAR, 2018). However, SS3 has been increasingly applied to migratory species 
with movement estimated (e.g., Indian Ocean yellowfin tuna; Fu et al., 2021). For both MFCL and 
SS3, the inability to incorporate local density-dependence in stock-recruitment functions has been 
identified as a primary limitation.  

MFCL and SS3 cannot fully accommodate either metapopulation or natal homing structures, 
given the inability to model local density-dependence. However, for assessments that do not use a 
spawner-recruitment relationship, the capability to incorporate time-varying apportionment of 
recruits among strata may compensate in MFCL and SS3 for the lack of strata-specific density-
dependence because the apportionment parameters can be density-dependent in response to global 
abundance. SS3 can accommodate natal spawning groups (or other specified population 
contingents, termed ‘morphs’) with unique demographics.  However, all morphs are derived from 
a global stock-recruitment relationship and subsequently apportioned (input or estimated) across 
spatial strata. Thus, natal homing dynamics can be partially emulated in SS3 by assigning a 
different morph to each natal stratum and applying a seasonal model structure to create a seasonal 
movement pattern between breeding areas and feeding areas.  

Gadget and Casal2 have the greatest flexibility in population structure. In addition to spatial 
heterogeneity within a single population, Gadget can also model metapopulations, whereas 
CASAL2 can accommodate natal homing. Both platforms can incorporate either local or global 
density-dependence in productivity based on the assumed population structure. CASAL, the 
precursor to Casal2, was initially developed for demersal species around New Zealand and then 
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extended to include natal homing dynamics (e.g., New Zealand snapper, Pagrus auratus; Francis 
and McKenzie, 2015). Gadget was developed for pelagic and demersal species in Europe, which 
required integrating metapopulation structure (Stefánsson and Pálsson, 1997). Both natal homing 
and metapopulation structure require population unit specific stock-recruit functions. The 
associated local density-dependence assumption for recruitment might have important 
implications when developing biological reference points and associated catch recommendations 
(Goethel and Berger, 2017; Kapur et al., 2021).  

As a result of the mathematical limitations inherent in VPA frameworks, VPA 2-Box is limited 
to modeling a maximum of two population units. However, VPA frameworks, in general, do not 
implement an explicit stock-recruit function, because a backward recursion calculation through 
time and age is utilized. Nonetheless, projections using the companion Projection 2-Box (PRO 2-
Box) can assume a population unit specific stock-recruit function for the available metapopulation 
or natal homing structures (ICCAT, 2003).  

Aside from VPA 2-Box, all other platforms are theoretically scalable to any number of strata 
(and population units for Casal2 and Gadget), but these will be effectively limited by data and 
computing power. Currently, the maximum number of spatial strata used in an operational 
assessment are 4, 6, and 9 for Casal2, SS3, and MFCL, respectively (Langley and Methot, 2008; 
Doonan et al., 2016; Day et al., 2023). All platforms can incorporate strata closed to fishing (e.g., 
marine reserves) within the confines of available population structures. Explicitly modeling the 
dynamics within closed areas may be difficult, though, if a fishery-independent survey (or other 
closed-area data set) is not available (McGilliard et al., 2015). 

Each platform provides a unique set of options for parametrizing and estimating dispersal and 
movement. Options may be constrained pending decisions about population structure (e.g., natal 
homing spawning migrations are only possible in a natal homing model; Table 3). All platforms 
use a box-transfer sub-model for connectivity with the assumption of instantaneous movement 
rates at the start or end (SS3) of the time step. Spawning migrations are directly incorporated into 
platforms that can handle natal homing population structure (Casal2 and VPA 2-Box) to enable 
natal return to spawning populations. For these models, natal spawning migrations are enforced at 
a specific age and time such as instantaneously in the middle of a time step, resulting in the need 
to estimate only non-spawning mixing rates (i.e., the degree of overlap among natal populations 
in a given stratum based on estimated migration rates out of the spawning area). Dispersal among 
populations can also be input or estimated in both Casal2 and VPA 2-Box , which results in small 
amounts of reproductive mixing among natal populations. For the metapopulation version of VPA 
2-Box and Gadget, dispersal (or reproductive mixing) among sub-populations is implied when fish 
move to another population-unit. All platforms also allow for larval dispersal via recruit 
apportionment (i.e., under the assumption of global density-dependence in stock-recruit 
dynamics). SS3 and Casal2 are the only platforms that enable estimation of age-0 movement, 
because population dynamics begin at birth, whereas most other models begin at the age of 
recruitment to the fishery. 

All platforms allow estimation of time- and age- or length-variation in movement parameters, 
and each includes parameter blocking or functional form options to reduce parameter load (Table 
3). For example, simplifications for age-based connectivity include using a linear ramp (MFCL 
and SS3), ogive or logistic relationships (Casal2 and MFCL), and/or partition-based (e.g., 
immature compared to mature age classes) preference functions linked to depth, distance, density, 
or other habitat variables (Gadget). Casal2 and SS3 also have the ability to model density-
dependent connectivity (e.g., relative to population density). The general movement formulation 
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for most platforms (besides MFCL) is a gravity model, which estimates residence diagonals of the 
movement matrix and then derives movement off-diagonals from all residence-gravity parameters 
to reduce the number of estimated parameters (as compared to the traditional box-transfer 
approach; Carruthers et al., 2011; Punt, 2019b). MFCL uses a unique, implicit transition matrix, 
which first estimates connectivity among adjacent strata. Connectivity among non-adjacent strata 
is then implicitly calculated if connectivity occurs among common strata (e.g., if connectivity 
occurs between a stretch of adjacent strata, then connectivity will also occur between the non-
adjacent strata in that stretch; Kleiber et al., 2018; Punt, 2019b), thereby reducing the number of 
parameters to be estimated.  

All platforms allow for spatially-invariant demographics, but only some (Casal2, Gadget, and 
VPA 2-Box) allow the analyst to switch between tracking phenotypic- and genotypic-based 
differences among strata (Cadrin et al., 2023). Spatially-invariant demographics are often assumed 
to avoid complications resulting from movement across demographic regimes (i.e., changes in 
growth or maturity as fish move between strata or join new population units). When a natal homing 
structure is assumed (as available in Casal2 and VPA 2-Box), demographics are often linked to 
genetic population and do not change based on stratum occupied. For Casal2, a partition category 
must be defined for each natal origin stratum to ensure that individuals can be tracked by their 
origin population as they move across space and through time. For Casal2, Gadget, and VPA 2-
Box, demographic parameters can be linked to stratum in a spatial heterogeneity model structures 
or sub-population in a metapopulation model structure, where the new demographic regime is 
instantaneously adopted once a fish moves to the new unit.  

2.3.2 Fleet spatial structure 
Across platforms, fleet structure is defined by known (i.e., observed) fleet dynamics and data 
availability, then linked to the number of strata or population units modeled. Each of the platforms 
has the ability to include multiple fleets (with theoretically no upper limit to the number that can 
be specified by stratum), and most can include an unlimited number of abundance indices. VPA 
2-Box is the most constrained of the five platforms, because data (e.g., the catch-at-age matrix) 
from multiple sectors or countries must be combined into a single stratum-specific matrix (i.e., 
multiple fleets or surveys must be aggregated by population unit). All the other platforms allow 
fleet-specific parameters to vary by stratum or to share parameters (e.g., selectivity) for common 
fleets across strata. However, a single fleet cannot technically operate across multiple strata (except 
in Casal2), because a new fleet must be defined for each stratum with associated strata-specific 
observed and predicted values. However, sharing or mirroring parameters for a specific fleet across 
multiple strata effectively emulates a single fleet operating across multiple strata. On the other 
hand, multiple fleets within a stratum are common (e.g., in Casal2, MFCL, and SS3), especially 
for large pelagic assessments. In application, a degree of aggregation is often necessary (e.g., 
across gear types within a sector or across countries within a gear type) due to limited sampling of 
length- or age-composition in many high seas fisheries. 

2.3.3 Biological reference points 
For the calculation of biological reference points, all platforms make similar equilibrium 
assumptions regarding spatial dynamics (e.g., movement, recruit apportionment, and relative 
removals by fleet are based on average values from a specified time block and held constant for 
the projection period). Many platforms can also calculate multiple types of biological reference 
points (e.g., MSY- or depletion-based), and some platforms calculate them as strata- or population-
explicit (MFCL and Gadget). PRO 2-Box, the extension to VPA 2-Box for implementing 
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projections, similarly allows for a single reference point for the entire domain or population unit-
specific reference points. SS3 calculates domain-wide reference points, while accounting for 
spatial dynamics and reporting stratum-specific depletion estimates. However, global density-
dependence is assumed for all platforms that model spatial heterogeneity structure and implement 
strata-specific reference points (MFCL and SS3 along with spatial heterogeneity implementations 
of Casal2 and Gadget). Otherwise, local density-dependence is assumed when population-specific 
reference points are calculated for metapopulation and natal homing implementations of Casal2, 
Gadget, or VPA 2-Box using PRO 2-Box. Typically, spatially-aggregated reference points are then 
calculated by summing population-specific values (e.g., B0 values as in Casal2) or performing a 
domain-wide yield- or spawner-per-recruit analysis using a weighted average (across population 
units) of the biological parameters (e.g., as in PRO 2-Box).   

2.3.4 Platform selection and development 
No current platform can address all (or even most) of the possible formulations across the primary 
decision-points for a spatially-explicit stock assessment (see section 2.1; Table 2). For instance, 
none of the platforms can incorporate every common type of population structure or movement 
pattern. Thus, when developing a spatial assessment, a platform should be chosen that can 
incorporate the available data, address the spatial drivers and primary uncertainties for the species 
being modeled, and produce outputs in a format that coalesce with the given management 
framework. In general, there are tradeoffs among platforms between population structure and 
connectivity complexity (Fig. 2). Casal2 and Gadget can be useful options when local density-
dependence needs to be addressed when metapopulation or natal homing population structures 
exist. Conversely, MFCL and SS3 are likely to be useful modeling options when global density-
dependence can be assumed. Casal2 and SS3 tend to allow for more complexity in connectivity 
options (e.g., age-0 movement and natal homing migrations, respectively). VPA 2-Box is 
constrained in terms of flexibility in spatial structure to a maximum of two modeled population 
units and options for movement dynamics. However, it is the only platform that can accommodate 
both metapopulation and natal homing population structure. Additionally, VPA 2-Box is the 
quickest of the platforms to initialize and provides a useful research tool for explorations of spatial 
dynamics (e.g., a comparison tool against single population assessments, such as for Atlantic 
bluefin tuna, Thunnus thynnus; Cadrin et al., 2019). 

Many of the reviewed platforms have been in development for a decade or longer and 
undergone iterative refinements to keep pace with research and development needs (Punt et al., 
2020). While many developmental features have yet to be used in operational applications, they 
highlight research priorities that can be achieved in the near-term. In particular, current research 
and development of spatial modeling features provides a window into future platform capabilities, 
opportunities, and ensuing challenges for next generation stock assessments (Table 3; Fig. 3). 

3. Current challenges implementing spatial stock assessments 
Despite the successful application in a few operational management settings (e.g., Indian and 
Pacific Ocean highly migratory species; Punt, 2019a), considerable challenges remain for broader 
adoption of spatial stock assessments. We highlight major challenges that remain, with emphasis 
on common issues noted across platforms.  

3.1 Lack of appropriate generality 
Next generation assessment platforms need to be developed where spatial population structure and 
associated spatial dynamics are a primary consideration from the outset (with the ability to 
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aggregate to one-strata panmictic assessments; Goethel et al., 2023a). Spatial structure is not 
always a primary consideration during initial platform development (except in a handful of 
instances), resulting in reactive developmental adaptations to spatial processes that govern stock 
dynamics. The development of new platforms should be fully flexible to accommodate all common 
population structures and enable modular additions and new parametrizations (e.g., connectivity 
modeling options). 

Bespoke spatial stock assessment models (e.g., Taylor et al., 2011; Punt et al., 2017; Goethel 
et al., 2019, 2021) are useful and often necessary research tools to guide the development of next 
generation assessment platforms. However, emphasis must be placed on overcoming the tendency 
to solely design bespoke spatial assessment frameworks, because they are often developed in 
isolation for a specific species or region, and have limited or specific dimensionality. Further, this 
can lead to a lack of communication within the modeling community, thereby limiting synergistic 
research and development opportunities. Improving communication and knowledge sharing when 
developing spatial assessments is necessary to further operational applications (Goethel et al., 
2023a). Next generation platforms will need to be well documented, reproducible (i.e., use open 
source code), and provide tutorial examples of spatial applications to ensure that potential analysts 
can implement spatial models and develop new modular code, as necessary, to fit specific and 
unique spatial dynamic applications.  

3.2 The challenge of too much or too little data 
Overcoming the curse of dimensionality (Bellman, 1961), while concomitantly ensuring 
parsimonious model parameterizations, remains an obstacle when constructing models with 
increasing spatial (and temporal) dimensions (Cope and Punt, 2011). For instance, the number of 
pairwise connectivity parameters increases proportional to the square of the number of units 
modeled. State-space methods can help reduce the parameter load associated with increasing 
model resolution, but have yet to be widely implemented for spatial stock assessments. Rapidly 
increasing scientific and technological advances along with associated decreases in collection costs 
for many data types have helped to improve understanding of spatiotemporal dynamics for marine 
species (Goethel et al., 2023b). Non-traditional data types (e.g., electronic tags, omics, vessel 
monitoring systems, and citizen science data) are often spatially-explicit, and should be integrated 
into spatial assessment models in the near future (e.g., Taylor et al., 2011; Oremland et al., 2022).  

Theoretically, tag data can provide important information on growth, abundance, mortality, 
and movement. Medium- to long-term tagging data sets can be informative about changes in 
biological processes over time, potentially enabling estimation of spatiotemporal variation in 
assessment parameters. However, most tagging studies are unable to uniformly release tags across 
a species’ range, which can possibly lead to large (and hard to detect) biases (Kolody and Hoyle, 
2015). Given the importance of conventional tagging data for informing spatial assessments, 
improving methods to account for tag non-reporting, tag loss or mortality, and incomplete mixing 
need to be a research priority (e.g., Goethel et al., 2019). New tagging approaches that reduce or 
eliminate common biases from unmet design-based methodological assumptions need to be 
incorporated into stock assessment model workflows and associated objective functions (e.g., 
genetically-based mark recapture techniques and spatiotemporal movement models; Skaug, 2001; 
Bravington et al., 2016; Mildenberger et al., 2023). 

The decomposition of a stock into defined spatial components, such as individual populations 
or strata, can introduce data complications. While the spatial resolution of some fishery monitoring 
data has improved in recent years and supports stratified or more continuous spatiotemporal 
approaches to assessment modeling, historical fishery data typically has lower spatial resolution 
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leading to increased model structure uncertainty or ad hoc spatial assignments. On the other hand, 
fishery independent surveys tend to be spatially explicit but have less spatial density and limited 
seasonality. The spatial integration of biological samples (e.g., size at age) and stock composition 
information needs to be considered for metapopulation and natal homing population structures but 
is often not straightforward (Taylor et al., 2011; Punt et al., 2020; Goethel et al., 2023a). 

3.3 Challenges with the management and review process 
Operational use of spatial assessments for management decision-making requires the 

calculation of spatial reference points. However, equilibrium assumptions that have traditionally 
formed the basis for reference point calculations become tenuous when spatial population 
dynamics are modeled, especially connectivity. Closed-form solutions for stratum-specific or 
population-specific MSY-based (or proxies thereof) reference points are feasible under 
assumptions of constant movement and other time-averaged (e.g., recent prevailing conditions) 
biological and fishery parameters (Porch et al., 2018; Kapur et al., 2021). Similarly, long-term 
simulations can be implemented to identify the fishing mortality that achieves a spatially-
aggregated MSY (e.g., Goethel and Berger, 2017). However, additional considerations and 
potential complications exist for the calculation of spatial reference points, which are not 
necessarily present in spatially-aggregated approaches. For instance, connectivity among strata 
often impedes the ability to achieve a constant reference point for multiple strata or population 
units simultaneously (Goethel and Berger, 2017; Bosley et al., 2019; Kapur et al., 2021). There is 
rarely a unique solution for attaining maximum sustainable yield across multiple spatial strata, 
because multiple combinations of fleet- and stratum-specific fishing mortality rates can achieve 
nearly identical levels of total yield (Bosley et al., 2019). Accordingly, additional strata-specific 
management objectives would be required to obtain unique and tractable solutions. 

Summarizing fishing mortality rates across spatial units is not straightforward, yet it is often a 
required metric for management action (e.g., fishing mortality is often a fundamental aspect of 
reference points or harvest control rules). No single measure of overall fishing mortality across all 
fleets and strata exists for spatial models that sufficiently represents fishing intensity. Langseth 
and Schueller (2017) contrasted several alternative approaches for synthesizing spatial fishing 
mortality estimates using simulation, which highlighted that considerable differences in projected 
stock status occur depending on the fishing mortality metric utilized and the relative sizes of the 
strata. While the development of a spatially-integrated fishing mortality metric for management 
remains an unresolved issue, further testing within a management strategy evaluation would be 
informative (Langseth and Schueller, 2017).   

Similarly, when assessment strata boundaries differ from management strata boundaries, 
resulting reference points may be incompatible or irrelevant for operational use. For instance, a 
common approach has been to apportion catch from a single-stratum panmictic assessment to 
multiple management strata. However, apportioned catches may not align with local dynamics, 
resulting in localized depletion within some management strata (Bosley et al., 2019). A priority 
focus should be to resolve inconsistencies across population, management, and policy dimensions 
to avoid unintended consequences (Freire and García-Allut, 2000; Cope and Punt, 2011; Kerr et 
al., 2017; Berger et al., 2021), and align outputs with the spatiotemporal scales that best reflect 
management objectives.  

Overcoming institutional inertia also remains a paramount challenge to advancing the 
operational use of spatial stock assessments for the provision of management advice (Berger et al., 
2017a,b). The process by which scientific advice is developed, presented, and used by fishery 
managers has historically been slow to change, and adoption of new scientific methods can be 
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time-consuming. The need for annual harvest specifications informed by stock assessments is often 
an additional obstacle to the development, testing, and application of complex spatial stock 
assessment models. Therefore, there needs to be sufficient capacity or training opportunities to 
enable adequate peer review of new spatial models as well as well-defined processes for the 
development of spatial assessments within the constraints of existing assessment cycles (Goethel 
et al., 2023a).  

4. Recommendations for good practices and the next generation of spatial assessment 
platforms  
Software design and modeling capabilities of next generation stock assessment platforms need to 
incorporate input from the global stock assessment community to build upon lessons learned and 
leverage research and developmental advancements (Hoyle et al., 2022). Here, we expand on 
Hoyle et al. (2022) and provide a set of good practice recommendations for developing spatial 
assessment platforms based on our review of current spatial capabilities (section 2), identify gaps 
and insufficiencies, and highlight general spatial modeling recommendations (e.g., Punt et al., 
2020; Goethel et al., 2023a). From a holistic design perspective, we focus on considerations that 
emphasize incorporation of spatial options from the onset of model development (Table 4). 
Although often overlooked, we recommend continued development of a common nomenclature 
(e.g., Table 1) as a first step when developing next generation stock assessment platforms to ensure 
unified understanding across frameworks, regions, and disciplines (e.g., Wetzel et al., In Review). 

4.1 Space – A basic (if not ‘the’) principle of design 
Space is the footprint within which we interpret ecological function and patterns over time, and 
there is “no single scale at which models should be constructed” (Levin, 1992). The development 
history of many assessment platforms has highlighted that spatial structure should be a 
foundational design consideration for next generation frameworks (Goethel et al., 2023a). From a 
flexible coding perspective, it is much easier to implement (and adapt) a model structure that starts 
with the most disaggregated spatial structure, then allows for aggregation of data or 
implementation of models at lower resolution, as needed. The same logic applies to population 
and partition structure, because allowing for the most complex partitioning from the outset allows 
for straightforward aggregation to less complex population structures (e.g., aggregation across 
natal strata for metapopulation or spatial heterogeneity structures). Spatial flexibility will require 
a fully generalized stock-recruit function, which allows for global or local density-dependence and 
spatiotemporal variability in recruitment (i.e., recruitment deviations and apportionment; Punt, 
2019a). The ability to implement multistage stock-recruit functions (e.g., Brooks et al., 2019) 
would also be beneficial. Integrating spatial structure across the life cycle would enable explicit 
modeling of larval connectivity and dispersal dynamics that are a primary driver of metapopulation 
structure (e.g., Goethel et al., 2011; Archambault et al., 2016) and a critical component of the 
reproductive resilience paradigm (Lowerre-Barbieri et al., 2016).  

4.2 Modularity and software development good practices 
Future platforms should be designed using software development good practices (e.g., including 
unit tests and post-compile model checks to validate the source code) and managed collaboratively 
by individuals with a background in software engineering, open-source tools, and project 
development (Hoyle et al., 2022). Enhancements should come from open-source contributions by 
an interdisciplinary development team to ensure that model capabilities transparently plan for 
evolving needs, improving ecological knowledge, and novel data sources. Resources will also be 
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necessary to ensure that documentation of platform capabilities, available methods, and worked 
examples remains up to date.  A user-friendly interface will also facilitate understanding of data 
input and modeling option layouts and specifications. Workflows should include rapid, automated 
model summaries, diagnostics, and management outputs in graphical and tabular form to 
streamline productivity and improve assessment completion timelines (Hayashi et al., 2021; 
Goethel et al. 2023a). 

Modular programming, or utilizing a network of independent functions that are easily 
interchangeable, adaptable, and flexible to evolving needs, will be essential for evolving platform 
maintenance and developmental needs. This is particularly necessary when considering flexibility 
in the spatial and temporal model domain to facilitate explorations of alternative model 
configurations, performance, diagnostics, and parsimony across a spatiotemporal 
continuum. Flexibility is paramount because it is difficult to predict how new ecosystem-level 
information will translate to spatial modeling and management needs, especially given climate 
change. Hence, a modular framework wherein partitions can be readily added and new spatial 
parametrizations coded (e.g., spatial linkages within connectivity preference functions) is 
necessary to ensure modeling tools remain effective, efficient, and have an extensive shelf life 
(Punt et al., 2020). Methods for parallelizing optimization routines and resources to simultaneously 
run multiple models (e.g., model ensembles or sensitivity explorations) to reduce computational 
time must concomitantly be improved (Punt et al., 2020; Hoyle et al., 2022). 

4.3 Efficient exploration of alternative spatial configurations 
Developing code that can efficiently implement multiple spatial structures will be necessary to  
conduct sensitivity or robustness tests and characterize structural uncertainty. Ideally, platform 
design should include the capacity to explore and simulation test hybrid and multi-scalar model 
structures, where the full complement of stock assessment types (i.e., spatially-aggregated, areas-
as-fleets, spatially-stratified, and spatiotemporal; Goethel et al., 2023a) could be implemented. The 
ability to nest a fine-scale spatiotemporal sub-model within an overarching spatially-stratified 
population model would enable fitting high-resolution tagging data at the scale it was collected to 
better inform estimates of movement parameters (e.g., Thorson et al., 2021). Nested, or 
hierarchical, spatial designs are conducive to integrating data types and population dynamics that 
act at fine (e.g., connectivity) and coarse (e.g., reproductive mixing) resolutions (Cao et al., 2020; 
Punt et al., 2020).  

The application of contemporary statistical methods to stock assessment models can also offer 
considerable gains in efficiency, practicality, and parsimony. For example, state-space methods 
offer flexibility with parameter estimation, especially for space- or time-varying demographic 
processes (e.g., movement; Stock and Miller, 2021). The Woods Hole Assessment Model 
(WHAM; https://github.com/timjmiller/wham) currently includes state-space features, but does 
not yet contain spatial capabilities (though a spatial Beta version of WHAM is in development; T. 
Miller, pers. comm.). Future research should explore how best to incorporate spatial processes and 
data collection at multiple, interacting resolutions. One avenue of exploration is the use of artificial 
intelligence (AI) through machine learning to explore hidden geostatistical structures and 
efficiencies in large data sets (De Iaco et al., 2022).   

4.4 Improved connectivity parametrization  
Designing a robust, flexible, and efficient set of connectivity parametrizations is recommended to 
promote broad use of spatial data and assessment options, because connectivity is typically one of 
the most difficult spatial population dynamic features to estimate. For example, increased 
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utilization of preference functions and connectivity kernels that can generate a wide-range of 
pairwise connectivity values with comparatively few parameters represents a potential solution. 
Connectivity information derived from preference functions are related to information content, 
such as in situ or remotely-sensed environmental data described in geographic layers, and thus can 
remove the scale-dependency issues inherent with estimating discrete box-transfer connectivity 
parameters (Goethel and Cadrin, 2021; Thorson et al., 2021). A generalized connectivity 
parametrization based on preference functions and connectivity kernels needs to satisfy several 
requirements: 

1) Integrated – applicable to both Lagrangian and Eulerian structures so that integrated 
models can include individual-tracking (i.e., Lagrangian models for individual archival 
tags) and density-tracking (i.e., Eulerian models for point-count samples) components; 

2) Versatile – the ability to incorporate a combination of three distinct connectivity processes: 
a) Passive advection: undirected transport following an ocean or tidal current; 
b) Taxis: directed movement of individuals towards preferred habitat, as learned 

behaviorally or ingrained evolutionarily based on local and past information, as well as 
behavioral cues and capacities; and 

c) Diffusion: residual and otherwise unexplained movement of Lagrangian particles away 
from a given location or Eulerian densities away from a grid cell; 

3) Scalable – data fitted at multiple spatiotemporal scales using the same structure and 
parameters across those scales (e.g., hours-to-days for 1-100m scales for acoustic arrays 
and predation experiments; days-to-months at 100m-10km scales for archival and 
electronic tags; and months-to-years at 10km-1000km scales for population or community 
models); 

4) Tractable – can be implemented with differing numbers of parameters (parsimony) and 
modular (flexible); 

5) Interpretable - defined according to ecological processes or theory such that research 
(targeted laboratory and field experiments) and monitoring (long-term surveys) can be used 
to identify model performance and applicability; and 

6) Functional – can be applied as an estimation model (i.e., efficiently calculate the inverse-
probability and using Bayesian or maximum likelihood methods to identify parameters 
conditional upon data) or an operating or projection model (i.e., sample from connectivity 
probabilities while projecting dynamics forward through time). 

 
Resource selection functions (RSFs) and potential functions (PFs) are analytical approaches 

that satisfy all of these requirements. With the former, movement probability between two time-
steps is defined as the product of a preference component (i.e., representing whether a given 
location is preferred or not) and an availability component (i.e., representing constraints about 
movement distance given speed as well as physical barriers; Manly et al., 2002). Diffusion is 
represented via the availability component, while passive advection and taxis are represented via 
the preference component of the RSF (Johnson et al., 2008). For the PF parametrization, movement 
probability is defined by integrating movement processes using a stochastic differential equation 
within a reaction-advection-diffusion model. In this case, taxis is defined as advection along the 
gradient of a PF, which is itself typically estimated as a function of covariates (Brillinger, 2012; 
Thorson et al., 2021; McClintock et al., 2021). Both approaches are functionally similar as the 
time-interval approaches zero, but they differ for practical applications as modeled time intervals 
increase. Both also define taxis based on environmental layers and a reduced set of habitat 
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preference parameters, which can greatly reduce model complexity relative to estimating pairwise 
movement rates between every modeled location (Lehodey et al., 2008; Mormede et al., 2017; 
Thorson et al., 2021). Next generation platforms should strive to incorporate these approaches, in 
addition to more common functional forms, to enable connectivity modeling with fewer 
parameters and more direct habitat and ecosystem linkages.  

4.5 Improved integration of demographic change 
Transitions among demographic regimes are complex and can be a nuisance (at best) or intractable 
(at worst) in spatial assessments owing to the interactive nature of population structure, 
demographic gradients, and connectivity across the spatial domain. A first step to improve 
modeling of spatially-explicit biological parameters is a better understanding of the environmental 
forcing variables that influence changes in demography. With continued investments and 
associated advancements in the field of omics, tools to disentangle genetic and phenotypic 
contributions to observed demographic patterns will lessen the need to make uninformed 
assumptions about spatial demography and lead to improved spatial assessments. For instance, 
modeling spatially-varying growth will likely require additional model partitions (e.g., tracking 
natal population, current stratum, length, and age), which would allow tracking maximum size by 
stratum (or population) and enable calculating growth increments as individuals move among 
strata (Punt, 2019a). Similar approaches could be used for other demographic parameters, such as 
maturity, though computing resources can drastically increase with the number of model partitions 
as noted for integrated length-age models that additionally partition by numerous tag release events 
(e.g., MFCL-based tuna assessments). Alternatively, weighted averages of demographic rates can 
be applied to populations that overlap according to the source of variation (genetic, phenotypic, or 
both) if natal origin and movement are tracked in combination. 

4.6 Keeping pace with novel data 
The estimation of spatial population parameters requires increasing amounts of informative data 
as nonstationary processes are uncovered at finer-scales. Next generation spatial platforms need to 
be amenable to incorporating novel data sets (e.g., information on connectivity; White et al., 2019), 
as well as novel methods that use traditional data sets, to inform the suite of spatial model features 
that should be considered (Table 4; Goethel et al., 2023b). For instance, vessel monitoring systems 
can provide high-resolution information on spatial patterns in fishery removals, which can be 
linked to habitat or environmental features (e.g., Gardner et al., 2022). Unstaffed or remotely-
operated vehicles can collect a suite of fishery-independent data, including video- or acoustic-
based indices of abundance and oceanographic data (e.g., de Robertis et al., 2021; Bolser et al., 
2023). Self-reported digital data and citizen science information can help improve catch statistics 
and biological samples across sectors and strata that may be difficult to otherwise sample. Local 
or traditional ecological knowledge can provide unique perspectives that help to refine model 
structure and hypotheses regarding system or fishery dynamics (e.g., Duplisea, 2018).  

Omics data are well suited to help identify mixing rates (i.e., population composition data from 
otoliths or genetic samples) and high-resolution spatiotemporal distribution (e.g., from 
environmental DNA data). The recent development of close-kin genetic data to implement mark-
recapture methods (Skaug, 2001; Bravington et al, 2016) seemingly has much potential to inform 
and improve spatial assessment models (Marcy-Quay et al., 2020). For instance, close-kin mark-
recapture (CKMR) can provide estimates of absolute adult abundance based on genetic sampling, 
while providing estimates of other parameters, such as adult natural mortality and reproductive 
contributions. The genetic information used in CKMR can also be used to identify stock-structure 
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and potentially even movement rates (Trenkel et al., 2022). Implementation of CKMR generally 
requires the use of a population dynamics model, so it is conceptionally amenable to being 
incorporated into a generalized stock assessment platform (see developmental features, Table 3). 
Alternatively, CKMR analyses could be conducted outside of the assessment model and the 
resulting population estimates fit by strata or population unit in a spatial population dynamics 
model (though careful consideration of uncertainty should be considered; Brooks and Deroba, 
2015).  

Flexibility in existing tagging sub-models will also be necessary, such that conventional tags 
can be modeled as either Petersen estimators or as tag-attrition models. The capability for either 
release or recapture conditioning, depending on tagging experiment design, could also help to 
minimize bias caused by partial-reporting, tag shedding, and tag-induced mortality (e.g., 
McGarvey and Feenstra, 2002; McGarvey et al., 2010). Spatiotemporal tagging sub-models are 
amenable to incorporating a variety of fine-scale data sets (e.g., electronic tag tracks, biotelemetry, 
operational oceanographic data, and habitat mapping), which can be used to parametrize 
connectivity preference functions within RSF or PF connectivity models (e.g., Marsh et al., 2015).  

4.7 Improve model performance diagnostics 
Diagnosing model performance and misspecifications are increasingly difficult as stock 
assessments become more complex (e.g., as the number of data sets or model partitions and strata 
increase). In a spatial context, analyzing data fits may not be feasible solely based on visual 
diagnostics, such as multi-dimensional residual patterns. There is an increased need to develop 
robust methods for data weighting that integrates information across the spatial domain with the 
increasing quantities and types of data used to support spatial models. Use of self-weighting 
likelihoods can help (e.g., Thorson et al. 2022), but more ad hoc iterative approaches will also 
likely need to be adapted (e.g., extend recommendations in Carvalho et al., 2017, 2021 to spatial 
situations). Determining model robustness as a function of model complexity will need to be 
routinely conducted using simulation testing, including an evaluation of variance-bias tradeoffs 
and considerations related to management implementation time lags. Recent recommendations to 
test the robustness of various model configurations to system or model uncertainties (Punt et al., 
2020), such as with a management strategy evaluation (MSE), will be more readily realized by 
incorporating easily accessible simulation capabilities into next generation platforms. Ensemble 
modeling approaches that develop inference by integrating outputs from multiple plausible models 
to account for model structure uncertainties are likely to have an increasing role as management 
procedures include spatial processes (Stewart and Martell, 2015; Jardim et al., 2021).  

4.8 Embrace spatial reference points 
Next generation platforms need to embrace tiered or nested approaches to developing reference 
points. Spatial assessments, and related management procedures, can further complicate traditional 
reference point considerations because equilibrium assumptions can become even less tenable 
(though see Kapur et al. 2021), calculations rarely have closed form or unique solutions, and 
allocations of catch or ratios of effort are often specified by stratum as well as fleet. Existing 
approaches from the reviewed platforms include stratum- and population-specific depletion 
estimators, MSY-based approaches, SPR proxies, and multi-scalar methods that account for both 
domain-wide reference points and strata-specific depletion. Along with the optimization routine 
for local density-dependence developed by Kapur et al. (2021), these methods are likely adequate 
to support management in the near-term. However, next generation assessments need to consider 
alternate approaches such as empirical density or habitat-occupied approaches (e.g., Reuchlin-
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Hugenholtz et al., 2015, 2016) to define reference points. Methods that account for nonstationary 
(or non-equilibrium) temporal dynamics need to be concomitantly examined across spatial strata. 
It is expected that increased application of spatial assessments and easier implementation of MSE 
frameworks that incorporate spatial dynamics will accelerate the movement away from solely 
using equilibrium- and model-based reference points towards minimally complex management 
strategies based on directly measurable empirical or hybrid indicators (e.g., CKMR abundance 
estimators; Hillary et al., 2019; Goethel et al., 2023b).   

5. Conclusions 
Spatially-explicit stock assessments can represent a stepping stone towards ecosystem-based 
fishery management (Plaganyi et al., 2014; Karp et al., 2019). Research investments are warranted 
for spatial assessments that increase awareness of the impacts of climate on species redistribution, 
examine the implementation of marine protected areas, identify local changes in abundance (i.e., 
‘localized depletion’), and elicit the explicit biotic and abiotic spatial-linkages that drive ecosystem 
processes and function (Cury et al., 2003; Nye et al., 2009; McClure et al., 2023). Relatively few 
generalized stock assessment software packages support spatial modeling approaches, and those 
that do were largely developed in relative isolation to address the specific needs of a stock or 
region, with little cross-collaboration. The reviewed platforms demonstrate some similarities in 
general stock assessment features, but specific spatial capabilities differ in many instances. 
Overall, no single platform in use today is fully generalizable to all (or even most) of the common 
spatial population structures and connectivity dynamics required to broadly assess marine 
resources that exhibit spatial structure. 

Based on our review of existing spatial model capabilities, it is recommended that next 
generation stock assessment platforms need to take a unified, modular software development 
approach that incorporates spatial layers (partitions or strata) as a foundational feature and are 
generalizable across common population and model structures. For example, a generalizable 
model should be able to implement spatially-aggregated and spatially-explicit models, while also 
enabling hybrid and multi-scalar sub-models. Utilizing the fundamentals of spatiotemporal 
approaches (e.g., spatial autocorrelation and random effects) will result in parametrization 
efficiencies that create space for the integration of high-resolution movement and tagging modules. 
Guidance on spatial stock assessment development and pragmatic workflows can help to overcome  
institutional impediments (Goethel et al., 2023a).   

Increased collaboration in the assessment development community through open source and 
group efforts has aided knowledge transfer and refined good practices for stock assessment tools. 
For example, recent collaborative workshops have aimed to develop international good practices 
for stock assessment (e.g., those held by the Center for Advancement of Population Assessment 
Methodology, CAPAM; http://www.capamresearch.org/Workshops) and specifically spatial 
modeling (via a global simulation experiment aimed at identifying and disseminating good 
practices in spatial stock assessment; https://aaronmberger-nwfsc.github.io/Spatial-Assessment-
Modeling-Workshop/; Goethel et al., In Review). Much of what has been learned through these 
international forums is guiding the development of new stock assessment modeling platforms that 
aim to incorporate a wide array of spatial capabilities (e.g.,  the Fisheries Integrated Modeling 
System; https://github.com/NOAA-FIMS). Ultimately, such efforts will help counter institutional 
inertia and increase operational application of spatial stock assessments to meet evolving marine 
resource spatial planning demands.  
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8. Figures 
 

 
 
Figure 1. Countries (blue fill) and regional fisheries management organizations (RFMOs) or 
similar oceanic entities (blue dots) that have used Casal2, Gadget, MFCL, SS3, or VPA 2-Box to 
develop operational management advice. Coloration is a representation at the time of publication 
and not exhaustive due to widespread use of these platforms and changes over time. CCAMLR: 
Commission for the Conservation of Antarctic Marine Living Resources; GFCM: General 
Fisheries Commission for the Mediterranean; IATTC: Inter-American Tropical Tuna 
Commission; ICCAT: International Commission for the Conservation of Atlantic Tunas; IOTC: 
Indian Ocean Tuna Commission; ISC: International Science Committee for Tuna and Tuna-like 
Species in the North Pacific Ocean; SIOFA: Southern Indian Ocean Fisheries Agreement; 
SPRFMO: South Pacific Regional Fisheries Management Organisation; WCPFC: Western and 
Central Pacific Fisheries Commission.  
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Figure 2. Conceptualization of tradeoffs between movement and population structure options for 
five assessment platforms that integrate spatial processes. Tradeoffs among other important drivers 
of spatial dynamics (e.g., recruitment, demographic variation, and fleet structure) are captured in 
Table 3. Symbols are shown for display purposes only and do not reflect trademarks or contain 
proprietary rights.
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 1 
Figure 3. Select model features related to spatial dynamics that are under development for each platform. Many of these features may 
not yet be available in the publicly released versions of each platform. Symbols are shown for display purposes only and do not reflect 
trademarks or contain proprietary rights. 

2 
3 
4 



34 
 

9. Tables 
 
Table 1. Definitions of spatial terminology used throughout the paper.  

5 

6 
7 

 8 
 9 
Term Definition 
Allocation The partitioning of a total catch quota (or limit) from a spatially-aggregated or panmictic assessment model 

to specific strata or management areas. 
Apportionment The partitioning of population-level recruitment across sub-populations or other spatial strata. 
Area-as-fleets A type of spatially implicit stock assessment wherein multiple fleets are modeled to account for spatial 

differences in age or length structure across the population, usually due to spatiotemporal variability in 
availability (i.e., movement patterns) or selectivity (i.e., fishery patterns) across the biological domain. 
Also referred to as ‘fleets-as-areas’. 

Biological domain The full spatial extent of a biological resource or species’ range. 
Connectivity Demographic linkage between spatial strata or population units as a result of larval dispersal, directed 

migrations, straying, or mixing. 
Dispersal Connectivity resulting in transition to another population unit, which includes the exchange of genes through 

reproduction, typically in the form of larval dispersal or movement of juveniles or adults. 
Local depletion Overexploitation within a strata or sub-population (or other critical subset of the biological domain), which 

may have negative biological or economic impacts, but may not be detectable within a panmictic or 
spatially-aggregated assessment. 

Metapopulation Population structure wherein a network of interacting sub-populations exists, each with unique stock-
recruitment relationships and quasi-independent demographics, but which demonstrate high rates of 
dispersal and reproductive mixing (i.e., often resulting in a single genetic population within a species).  

Mixing Connectivity resulting in multiple population units temporarily co-occurring in a spatial stratum (i.e., overlap 
associated with natal homing population structure).  

Movement Connectivity resulting in transition to and reproductive mixing with a new population unit (i.e., dispersal 
within a metapopulation) or transition to a new spatial stratum (i.e., within a single population with spatial 
heterogeneity). 

Natal homing Population structure wherein limited reproductive mixing occurs outside of a natal population and defined 
by return spawning migrations to natal spawning locations, often resulting in genetic populations within 
a species. Mixing often occurs amongst multiple genetic populations during non-spawning periods, but 
with very limited dispersal. Also, commonly referred to as natal return or overlap structure.    

Panmictic Population structure wherein a single, reproductively well-mixed population occurs for a species that 
demonstrates limited spatial structure or spatial dynamics. 

Population A self-reproducing biological entity within which all fish are able to reproductively mix and have the 
potential to contribute to recruitment, often resulting in a distinct genetic biological entity. Depending on 
whether demographics are genetically or environmentally determined, individuals may or may not share 
a common set of biological parameters. The population is often the demographic unit of concern for 
conservation. 

Population structure The degree and type of biocomplexity within a species resulting from connectivity, reproductive dynamics, 
and other processes that influence spatial ecology (e.g., ecosystem interactions). 

Spatially-aggregated In assessment nomenclature, a model that does not account for spatial dynamics (i.e., panmictic assessment). 
Spatially-explicit In assessment nomenclature, a model that mechanistically accounts for spatial dynamics (i.e., a spatially-

stratified or spatiotemporal assessment). 
Spatially-implicit In assessment nomenclature, a model that accounts for spatial dynamics implicitly through the spatial 

assignment of non-spatial processes (i.e., areas-as-fleets). 
Spatially-stratified In assessment nomenclature, a coarse resolution spatially-explicit assessment model that models broad-scale 

population units or spatial strata assuming box-transfer movement across strata (as opposed to high 
resolution spatiotemporal assessment models).  

Spatial heterogeneity Population structure wherein strong spatial structure exists within an otherwise panmictic population due to 
differences across the biological domain in demographics, exploitation, habitat usage, connectivity, or 
other ecosystem drivers. Reproductive dynamics assume a single reproductive population (i.e., stock-
recruit relationship) with apportionment to strata. 

Spatial strata A unit of spatial delineation (i.e., area or region) within a population, typically corresponding to common 
fishery (e.g., management area) or biological (e.g., phenotypically distinct) conditions.  

Spatiotemporal In assessment nomenclature, a high resolution spatially-explicit assessment model that uses spatial 
autocorrelation and random effects to enable modeling fine-scale spatial strata and spatiotemporal 
dynamics (as opposed to coarse resolution spatially-stratified assessment models). 
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Stock An ambiguous delineation often utilized to define management units, but which may constitute a population, 
metapopulation, sub-population, fishery unit, or a mixture of entities.  

Straying Permanent adult dispersal to a new population or sub-population. 
Sub-population A reproductive unit of a metapopulation, which demonstrates unique demographics, but that is not 

genetically independent. Sub-populations are the key biological entities within a metapopulation.  

10 



36 
 

Table 2. Overview of the primary modeling framework options available for each of six key population dynamic and management 
criteria (columns) when incorporating spatial population structure into decision-making. Identified spatial options are considered, or 
refined, within a defined model time-step and other necessary partitions (e.g., age, sex, life-stage). The range of functionality for each 
of the reviewed platforms is provided in Table 3. 

11 
12 
13 
14 

   15 
 16 

Population Structure  Recruitment Dynamics Connectivity Demographic Variation Fleet Structure  Biological Reference 
Points  

Panmictic 
  No spatial structure 
  Single stock-recruit 

relationship 
 
Spatial heterogeneity  
  Multiple spatial strata within 

a single population 
  Single stock recruit 

relationship with 
apportionment to strata 

 
Metapopulation 
  Multiple sub-populations with 

reproductive mixing 
  Each sub-population has a 

unique stock-recruit 
relationship 

 
Natal homing 
  Multiple populations with 

spatiotemporal overlap 
  Each population has a unique 

stock-recruit relationship  

Global density-dependence (single stock-
recruitment relationship)  

  Symmetric or no (i.e., if panmictic) 
apportionment to spatial strata  

  Spatially-invariant temporal deviations (i.e., for 
apportionment or from the stock-recruit curve) 

 
Global density dependence (single stock-

recruitment relationship)  
  Estimated apportionment to spatial strata  
  Spatially-varying temporal deviations (i.e., for 

apportionment or from the stock-recruit curve) 
 
Local density-dependence (stock-recruitment 

relationship for each spatial strata) 
  Spatially-invariant temporal deviations (i.e., from 

the stock-recruit curve)   
 
Local density-dependence (stock-recruitment 

relationship for each spatial strata) 
  Spatially-varying temporal deviations (i.e., from 

the stock-recruit curve)  

No movement 
 
Age-0 movement (larval dispersal)  
 
Time- and/or age-varying movement 

estimated 
  Functional forms widely utilized (e.g., 

preference functions or linear ramps by 
age)  

  Parameter blocking possible 
 
Time- and/or age-varying mixing estimated 
  Functional forms widely utilized (e.g., 

preference functions or linear ramps by 
age)  

  Parameter blocking possible 
 
Spawning or feeding migrations to/from 

natal spawning ground 
 
Straying from natal populations  

Spatially-invariant 
 
Phenotypically-based  
  Demographics change with 

strata or population unit 
occupied 

  Assumes environment drives 
demographics 

 
Genetically-based  
  Demographics do not change 

as fish moves 
  Assumes rates are defined at 

birth and based on natal 
population 

 
Mixture of phenotypic- and 

genetic-based demography 

Single fleet or survey across all 
strata 

  No spatial variation in 
selectivity 

 
Single fleet or survey per strata 
  No spatial variation in 

selectivity 
 
Single fleet or survey per strata 
  Spatial variation in selectivity 
 
Multiple fleets and surveys per 

strata 
  Spatial variation in selectivity 
  No parameter sharing allowed 
 
Multiple fleets and surveys per 

strata 
  Spatial variation in selectivity 
  Parameter sharing allowed 

Single reference point for 
entire biological domain 

  Global density-
dependence 

 
Strata-specific reference 

points 
  Assume global density-

dependence 
 
Population unit-specific 

reference points 
  Assume local density-

dependence 

17 
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Table 3. The primary capabilities for incorporating spatial population dynamics into models for each of the five spatial stock assessment 18 
platforms. The last column includes select key development features (see Fig. 3 for more details). DD = density dependence; CKMR = closed-19 
kin mark-recapture;  20 
 21 
 22 

Model 

Number of 
Population 

Units, Strata, 
and Species 

Population 
Structure 

Recruitment 
Dynamics  Connectivity Demographic 

Variation Fleet Structure  
Biological 
Reference 

Points  
Spatial Data Integration Developmental 

Features 

Casal2 Population 
structure and 
strata limited 
by data and 
computing 
capacity, 
Multi-
species 

Panmictic, spatial 
heterogeneity, 
or natal homing 

Global DD with 
apportionment 
or local DD; 
spatial temporal 
deviations 

Time- and age-varying 
movement estimated; 
functional forms 
(preference functions) 
and blocking available; 
natal homing spawning 
migrations included 

Genetically- or 
phenotypically-
based (depends 
on population 
structure), M, 
Movement, 
recruitment 
patterns 

Multiple 
options 
available 
with spatial 
variation and 
parameter 
sharing 

Strata- or 
population
-specific, 
local or 
global DD 

Mark-recapture (Petersen 
abundance estimator, tag 
detection independent of 
fleet, tag attrition, tag 
mixing periods where no 
recaptures are fit, sub-fleet 
recaptures) 

Tag-recapture by age 
and fleet with 
more likelihood 
options; 
preference-based 
environmental 
forcing of M, 
growth, and 
movement 

Gadget Populations, 
strata, and 
species 
limited by 
data and 
computing 
capacity 

Panmictic, spatial 
heterogeneity, 
or 
metapopulation 

Global DD with 
apportionment 
or local DD; 
spatial temporal 
deviations 

Time- and age- and 
length-varying 
movement estimated; 
functional forms and 
blocking available 

Genetically- or 
phenotypically-
based (depends 
on population 
structure) 

Multiple with 
spatial 
variation and 
parameter 
sharing 

Strata- or 
population
-specific, 
local or 
global DD 

Mark-recapture (tag-attrition, 
reporting rate by fleet), 
stock composition, 
environmental covariates, 
predation  

Preference function 
movement, 
CKMR, custom 
tagging 
likelihoods 

MFCL 1 population 
and species, 
strata limited 
by data and 
computing 
capacity 

Panmictic or 
spatial 
heterogeneity 

Global DD with 
spatial temporal 
deviations in 
apportionment 
to strata 

Seasonal- and length-
varying movement 
estimated though 
stationary inter-
annually; functional 
forms and blocking 
available 

Spatially- invariant Multiple with 
spatial 
variation and 
parameter 
sharing 

Strata- or 
population
-specific, 
global DD 

Mark-recapture (tag-attrition, 
reporting rate by fleet or 
cohort, tag mixing period 
with unique F) 

Recruitment 
parameterization 
enhancements 
(time- and strata-
varying with 
interactions) 

SS3 1 population 
and species, 
strata limited 
by data and 
computing 
capacity 

Panmictic or 
spatial 
heterogeneity 

Global DD with 
spatial temporal 
deviations in 
apportionment 
to strata 

Age-varying movement 
with linear ramp; 
movement rates time-
varying and 
environmentally 
influenced 

Genetic growth 
morphs with 
different growth, 
M, Movement, 
recruitment 
patterns 

Each fleet 
operates in 
single strata; 
can share 
parameters  

Population-
specific, 
global DD 

Mark-recapture (tag-attrition, 
reporting rate by fleet, 
defined tag mixing period 
where no recaptures fit), 
stock composition, 
environmental covariates  

Multiple populations, 
local DD, 
population-
specific reference 
points, CKMR 

VPA 2-Box 1 or 2 
populations 
(strata match 
populations), 
1 species 

Metapopulation or 
natal homing 

Local DD with 
spatial temporal 
deviations 
(default to 
global if 1 
population) 

Time- and age-varying 
movement estimated; 
blocking and random 
walk available; natal 
homing spawning 
migrations included 

Genetically- or 
phenotypically-
based (depends 
on population 
structure) 

Multiple per 
stratum, but 
aggregated 
by stratum, 
with spatial 
variation 

Population-
specific, 
local DD 

Mark-recapture (tag-attrition, 
reporting rate by fleet, 
mixing period with unique 
F), satellite tags, stock 
composition, 
environmental covariates  

No active 
development; 
custom features 
added as needed   

23 
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Table 4. Recommended platform capabilities for next generation stock assessment models that incorporate spatial population dynamic 24 
processes. Platform design should include flexibility within the core features of spatial models.   25 
 26 
 27 

Feature Ideal Flexibility Capability 
Code structure  Modular, easily adaptable and readable Modular; parallelized optimization; transparent; group development; 

reproducible; documented 

Model partition Model and spatial structure options integrative with data, 
population dynamic, and management needs 

Time-step; age; sex; life-stage 

Model structure Fully hybrid with ability to accommodate almost any model 
type 

Spatially-aggregated; areas-as-fleets; spatially-stratified; 
spatiotemporal 

Spatial structure  Enable multi-scalar aggregation or disaggregation 1-stratum; multiple strata (limited only by data); multi-scalar (adjust 
to scale of individual data sets; e.g., high resolution tagging sub-
models) 

Population structure Generalizable to all common structures Panmictic; spatial heterogeneity; metapopulation; natal homing 

Data integration Multi-scalar and amenable to novel data sources Flexible aggregation to fit scale of data collection; population 
composition data (e.g., otoliths); natural markers (e.g., parasites); 
close-kin mark-recapture and gene-tagging; vessel monitoring 
system catch data; operational oceanography; citizen science, 
digital reporting, and local ecological knowledge; telemetry and 
electronic tagging 

Parameterization Readily reduce effective parameters Enable random effects; include spatial autocorrelation; share 
parameters across fleets, strata, time-step, or populations; utilize 
prior information 

Parameter estimation Multiple methods for statistical inference Maximum likelihood; Bayesian with informative prior information 
and Markov chain Monte Carlo for posterior distributions 

Stock-recruit  Match population structure assumed scale of density 
dependence and include pre-recruit spatial dynamics 

Local density-dependence; global density-dependence; multistage 
stock-recruit function (with ability to model larval dispersal) 

Recruitment 
variability  

Incorporate spatiotemporal variability options for deviations 
and spatial apportionment 

Fixed input; time-invariant estimation; temporal variation; spatial 
variation; spatiotemporal variation 

Movement Time- and age-varying with new options easily incorporated No movement; fixed input; time-varying; age-varying; age- and 
time-varying; flexible parameter blocking; easy manipulation of 
movement matrix to remove infeasible movement patterns; 
functional forms (e.g., gravity-based, linear ramps, etc.); 
preference functions and environmental linkages (e.g., RSF and 
PF models); seasonal migrations (e.g., feeding and spawning); 
density-dependent movement; random walk 
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Dispersal Matching array of population structures No interactions among populations; no reproductive mixing, but 
overlap; larval dispersal only; full reproductive mixing 

Regional abundance 
estimation  

Potential for data linkages Regional abundance scaled by empirical data; regional abundance 
estimated directly 

Fleet structure Parametrization that allows aggregation or disaggregation of 
fleets within strata along with parameter sharing among 
strata 

Common fleet type across strata with parameters shared across 
strata; common fleet type across strata with unique parameters; 
unique fleet type across strata with or without shared parameters 
across strata 

Demographic 
variation 

Genetic or phenotypic linkages that account for natal 
demographic regime, previous demographic regime, and 
current demographic regime (e.g., age-size models with 
growth increments and tracking of connectivity trajectory) 

Constant across model domain; spatially-varying using empirical 
inputs; genetic-based demographics (i.e., based on natal 
population); phenotypic-based demographics (i.e., based on 
occupied strata); combined genetic and phenotypic variation 

Tagging sub-model  Multiple structures and resolutions No tag data; aggregated within strata; high resolution (i.e., sub-strata 
resolution); Petersen estimator by stratum and fleet; Brownie 
(tag-attrition) release conditioned; Brownie (tag-attrition) 
recapture conditioned; estimate ‘nuisance’ parameters (e.g., tag 
mixing and tag reporting) and incorporate auxiliary Information 
(e.g., high reward tag reporting information) 

Data weighting Likelihood easily adaptable to model partition and structure 
specification  

Data driven and reproducible; spatiotemporal iterative reweighting; 
random effects estimation; state-space estimation 

Diagnostics Multi-scalar evaluation with quantitative and visual aid 
summaries 

Goodness-of-fit; prediction skill; retrospective performance, model 
consistency; convergence 

Simulation testing Readily adapt to operating and estimation model modes 
across different population structures and spatial strata 

Full feedback loops (MSE); data generation and estimation at 
multiple scales; resampling and other Monte Carlo methods; 
perform self-tests 

Biological reference 
points  

Multi-scalar and able to incorporate empirical or directly 
measured options 

Spatially aggregated; strata- and/or population-specific; assuming 
local or global density-dependence; able to calculate empirical 
reference points (e.g., based on density or area-occupied); able to 
incorporate non-equilibrium dynamics and non-stationary 
connectivity 
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